
Evolving principal component clustering with a low
run-time complexity for LRF data mapping

Gregor Klančara,∗, Igor Škrjanca

aLaboratory of Modelling, Simulation and Control, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia

Abstract

In this paper a new approach called evolving principal component clustering is

applied to a data stream. Regions of the data described by linear models are

identified. The method recursively estimates the data variance and the linear

model parameters for each cluster of data. It enables good performance, robust

operation, low computational complexity and simple implementation on embed-

ded computers. The proposed approach is demonstrated on real and simulated

examples from laser-range-finder data measurements. The performance, com-

plexity and robustness are validated through a comparison with the popular

split-and-merge algorithm.

Keywords: line extraction, evolving clustering, laser range finder

1. Introduction

In mobile robotics, localization plays the key role in most applications. In

most cases advanced sensor systems are required to estimate the robot pose,

mostly due to the fact that there is no single and effective sensor that would

directly measure the robot pose in an indoor environment. For an outdoor5

location the closest approximate is GPS, but this can fail in areas with no

satellite signal reception. Therefore, various different sensors are fused together

to improve the robustness and quality of the pose estimate ([1, 2, 3, 4]). In

∗Corresponding author. Tel.: +386-1-4768764; fax:+386-1-4264631
Email address: gregor.klancar@fe.uni-lj.si (Gregor Klančar)

Preprint submitted to Journal of LATEX Templates June 24, 2015

mobile robotics a very popular sensor for this purpose is the laser range finder

(LRF), which has good coverage, dense information, high accuracy and a high10

sampling rate. It can be used for localization purposes, map building or SLAM,

as in [5], [6], [7], [8], [9], [10]. Using a LRF the robot pose can be estimated

by comparing a locally sensed map given by a cloud of reflection points and a

known map of the environment. This comparison is usually made by comparing

simple geometric features that are extracted from the LRF reflection points.15

The simplest features are straight lines.

To estimate the line feature parameters from 2D laser-range-finder data sev-

eral line-extraction algorithms have been proposed. The process of line fitting

generally requires two steps: first, the input points are investigated to find clus-

ters of points that can be described by a line and, second, a line-fitting method20

is applied to estimate the straight-line parameters for the identified clusters.

This process is usually done recursively. When the points are obtained from

a 2D LRF the first step of the procedure can be simplified, because the clus-

ters always consist of consecutive LRF points (here, it is called a sorted data

stream). For the second step a least-squares method is normally used.25

A very popular and powerful approach in image processing is the Hough

transform, [11] where the data are transformed to a parameter space, and by

locating the maxima the number and the parameters of the lines are obtained.

Some drawbacks of the classic algorithm are parameter-space quantization as

well as substantial computational and storage requirements [12]. To increase30

the accuracy and avoid the required predefined fine grid of the accumulator

in the parameter space, several studies on the randomized Hough transform

[13] were proposed that reduce the computational time and the storage require-

ments. The online adaptive implementations proposed in [14] reduce the space

requirements and retain a high parameter precision. However, in general the35

position and the length of the line segments cannot be determined, and also

collinear line segments cannot be separated. Some additional algorithm needs

to be implemented to locate the line segments on the identified straight lines.

For the data obtained from a LRF used in indoor environments the split-

2

and-merge algorithm [15] is a very common choice made by robot developers.40

An extensive comparison of line-extraction algorithms is reported in [12], where

the split-and-merge and incremental algorithms were preferred because of their

simplicity, low computational complexity and good estimation results. Primarily

because of their simplicity, incremental algorithms have been used in many

applications. The data are incrementally added to the initial line cluster until45

the data fit the model; otherwise a new cluster is constructed.

A binary regression tree obtained by recursive fuzzy clustering and the iden-

tification of a hinging hyperplane that consists of two linear submodules is de-

scribed in [16]. Similarly, a generalized fuzzy C-means clustering is proposed by

[17]. A recursive clustering and fuzzy Takagi Sugeno identification is presented50

in [18], [19], [20]. Fuzzy approaches can also be applied to identify a low size

feature subset which maximize information and minimize data redundancy as

in [29]. These approaches can effectively model general nonlinear dynamics sys-

tems, but for linear data several more effective approaches can be applied, as

stated in [12].55

The robust fitting of models in the presence of outliers that can be ob-

tained using the RANSAC (Random Sample Consensus) algorithm is intro-

duced in [21]. A robust expectation-maximization estimate for a mixture of

linear-regression models is proposed in [22] and robust clustering around the

regression models is proposed in [23].60

In most presented algorithms, fitting the model to the data involves least-

squares methods, which can be hard to code on simple embedded hardware and

also require some computational power because the data fitting is carried out

many times in the recursive line-extraction algorithms.

Our idea is to fit the model using recursive principal component analysis65

(PCA), which is very easy to implement and computationally effective. A re-

cursive PCA for adaptive process monitoring is used in [24]. An expectation-

maximization approach for high-dimensional data model-based clustering using

an incremental PCA is presented in [25]. In our study only a recursive co-

variance matrix needs to be evaluated. From the covariance matrix the model70

3

parameters that optimally fit the data in the sense of squared errors are defined

by eigenvectors of the covariance matrix. The main advantage of the proposed

approach is its low computational complexity and the very simple implementa-

tion of the algorithm, as it only requires basic arithmetic operations, such as

additions and multiplications, together with high accuracy. This makes the pro-75

posed algorithm especially appropriate for SLAM problems where localization

is done online.

The paper is organized as follows. After the introduction, the structure of the

evolving principal component clustering (EPCC) algorithm is presented. Next

the performance, computational complexity and robustness of the EPCC are80

evaluated and compared to the Split–and–Merge algorithm. The experimental

and simulation results are described and at the end some conclusions are drawn.

2. Evolving principal component clustering

In batch clustering the usual problems are the initialization of the clusters

and the in-advance guess of the correct number of clusters. The number of85

clusters can be determined by iteratively increasing the number of clusters and

performing a clustering algorithm for each iteration until the terminating criteria

are reached (e.g., the split-and-merge algorithm).

An alternative approach is recursive clustering, which is especially suitable

for data streams. Here, the algorithm recursively estimates the simple statistical90

properties of the data (mean and variance) and clusters the data into clusters

whose centers are defined with linear prototypes. The algorithm starts with one

cluster and adds a new cluster when the current data sample does not belong

to the existing prototypes. For the dimension of the data r the dimension of

the prototype is s = r − 1 or less, so s = 1 for a straight line, s = 2 for a plane95

and s > 2 for a hyperplane.

4

2.1. Estimate of cluster mean and variance

The mean value and the variance for each cluster are calculated recursively.

The mean value of the data in cluster j is defined by

μμμj(kj) =
kj − 1
kj

μμμj(kj − 1) +
1
kj
zzz(kj) (1)

where kj is the current index of the data in cluster j and zzz(kj) is the current100

data sample belonging to the cluster. The initial mean value of the cluster is

μμμj(kj) = zzz(kj), where kj = 1. The covariance matrix of the cluster j is defined

as follows

ΣΣΣj(kj) = kj−2
kj−1ΣΣΣj(kj − 1) + 1

kj
(zzz(kj) −μμμj(kj − 1)) (zzz(kj) −μμμj(kj − 1))T

(2)

which is equivalent to the non-recursive form

ΣΣΣj =

∑nj

kj=1 (zzz(kj) −μμμj) (zzz(kj) −μμμj)
T

n− 1

where nj is the number of data in the cluster j.

The covariance matrix ΣΣΣj contains the elements ΣΣΣj =
[
σ2

io

]
, i = 1, ..., r, o =105

1, ..., r, which can be used to estimate the j-th linear prototype parameters, as

shown in subsection 2.1.1.

2.1.1. Estimation of eigenvectors for low-dimensional data

The normal vector of the j-th linear prototype (hyperplane model of the

cluster j) is the eigenvector pppj with the smallest eigenvalue. The eigenvectors110

can be obtained by a singular value decomposition of the covariance matrix

ΣΣΣj , where an algorithm like [26] could be applied. However, for two- or three-

dimensional data (r = 2, the prototype is a straight line or r = 3, the prototype

is a plane) it is computationally much more efficient if the normal vector is

obtained from ΣΣΣj . In the following the normal vector pppj to the linear prototype115

is estimated for two-dimensional data and three-dimensional data. The normal

vector pppj belongs to the smallest eigenvalue, which equals

λj = pppT
j ΣΣΣjpppj (3)

5

The orthonormal eigenvectors of the cluster j are obtained from the covari-

ance matrix ΣΣΣj using its elements. The normal vector in the case of r = 2

is

pppj =

⎡
⎢⎣

− θ1√
θ2
1+1

1√
θ2
1+1

⎤
⎥⎦

where

θ1 =
σ12

σ11
(4)

and where σio, i, o ∈ {1, 2} are the elements of the covariance matrix.

In the case of three-dimensional data (r = 3) the normal vector is defined

by

pppj =

⎡
⎢⎢⎢⎢⎣

− θ1√
θ2
1+θ2

2+1

− θ2√
θ2
1+θ2

2+1

1√
θ2
1+θ2

2+1

⎤
⎥⎥⎥⎥⎦

where120

θ1 =
σ13σ22 − σ23σ12

σ11σ22 − σ2
12

θ2 =
σ13σ12 − σ23σ11

σ2
12 − σ11σ22

(5)

and where σio, i, o ∈ {1, · · · , 3} are the elements of the covariance matrix.

This approach can also be extended to higher dimensional data, but it be-

comes more computationally intense. Therefore, for higher dimensions (r > 3)

the normal vector could instead be obtained by the singular value decomposition

of ΣΣΣj .125

2.2. Linear prototype estimation and clustering criteria

The normal vector pppj of the j-th prototype that models the data zzz(kj)

(kj = 1, · · · , nj) in the cluster j defines the j-th prototype equation as follows

(zzz(kj) −μμμj)
T · pppj = 0

6

For the current datum sample zzz(k), which needs to be classified in one of

the existing prototypes j (j ∈ {1, · · · ,m}), the orthogonal distance dj(k) (in

the direction of the normal vector) from the j-th prototype is calculated as

dj(k) = |(zzz(k) −μμμj)T · pppj | (6)

If dj(k) = 0 the data sample lies on the linear prototype j. This orthogonal130

distance dj(k) is used to determine wether the current data sample zzz(k) belongs

to the j − th cluster. To do this test robustly (in the presence of system noise

and different data scaling) a criterion compares the orthogonal distance of the

current sample to the j-th prototype with the variance of the orthogonal distance

σj of all the data samples in the cluster. The clustering criterion is formulated135

as

dj(k) < κmax
√
σj (7)

where κmax is a positive constant defining the sensitivity of the clustering cri-

teria relative to the cluster distance variance √
σj . If normal LRF sensor noise

distribution is supposed then selecting κmax = 3 would imply 99.7 % off all sam-

ples to be properly classified or κmax = 4 would result in theoretically 99.9 %140

of all samples belonging to the prototype being also correctly clustered. How-

ever by further increasing κmax this percentage converges to 100 % but also the

probability of wrong clustering increases.

If the current data zzz(k) fulfils criterion (7) the number of data in the j-th

cluster is increased (nj −→ nj + 1) and the cluster distance variance (together145

with the cluster mean (1) and variance (2)) is updated recursively as follows

σj(kj) = σj(kj − 1)
kj − 2
kj − 1

+
1
kj
dj(k)2 (8)

An additional criterion, when adding the data sample zzz(k) to the j-th cluster,

could be the distance to the cluster mean value μμμj or the distances between

consecutive points (in the case of a data stream from a laser range finder). This

distance should be below the average distance between the consecutive data150

samples in the cluster. Dislocated points will then form a new cluster, although

the criterion (7) is fulfilled.

7

The identified strait line segments are defined by the linear prototypes pa-

rameters (clusters centers and eigenvectors) and by the end points which are

obtained from the two points in the cluster with the maximum distance among155

them. In sorted data stream this are the first and the last sample in the cluster.

2.3. Cluster initialization

The proposed clustering algorithm starts with one cluster and adds a new

cluster if the current data sample zzz(k) does not satisfy the criterion (7) for the

current clusters j ∈ {1, · · · ,m}.160

To initialize a cluster a set of at least kmin (for r = 2, kmin = 3) data

sample candidates that reliably form a new prototype are required. kmin is

defined by the data dimensionality r where the linear model can be estimated

from at least r data samples. To increase robustness to noise and outliers kmin

should be higher so that the identification becomes over determined. First,165

the mean and variance of the new cluster candidate are calculated using (1)

and (2). Then, the distance criterion (7) to the new prototype is validated. To

reliably form a new cluster in the initialization phase, the κmax parameter in (7)

can be lowered (e.g., by 50%). Additionally, the distance between consecutive

data samples can be validated. The cluster is initialized with the mean value,170

variance, linear prototype (the last eigenvector of the covariance matrix) and

orthogonal distance variance (8).

2.4. Outlier removal

In the case of data streams where the data are arriving in a sorted fashion, as

in a laser range finder where consecutive data samples belong to one prototype,175

the process of outlier detection is as follows.

• When the current data zzz(k) does not belong to the current cluster it

is stored in a buffer. When kmin or more data samples are stored in the

buffer, they are checked for consistency to form a new cluster initialization.

If the initialization is successful then the content of the buffer is cleared.180

If the buffer contains only outliers or too much outliers then condition (7)

8

for at least kmin samples in the buffer is not fulfilled and the initialization

phase is unsuccessful and the buffer data are kept for future iterations.

If the buffer is full (i.e., it contains more than 2kmin samples) then the

oldest sample is removed. The number of full buffer nbuf must be higher185

than kmin to be able to eliminate outliers. If nbuf = 2kmin then correct

cluster initialization can be obtained if the buffer contains less than 50 %

outliers.

• If less than kmin samples are buffered and the current sample zzz(k) is

successfully clustered to one of the existing prototypes, then those buffered190

samples are considered as outliers and are removed from the buffer.

For general data streams where the data samples are arriving randomly, con-

secutive data samples do not necessarily belong to the same prototype. In this

case the data samples that are not clustered in one of the existing prototypes are

stored in a buffer. When the buffer contains more than kmin data it is checked195

to see whether a new prototype (new cluster initialization) can be identified.

When a new cluster is initialized using kmin or more data from the buffer the

remaining buffer data must remain in the buffer for future iterations. To limit

the required memory space the available buffer size nbuf is defined and when it

is exceed the oldest sample is removed.200

2.5. Clustering algorithm

The proposed evolving clustering algorithm is illustrated in Fig. 1. The

pseudo-code of the principal component clustering algorithm in on-line identifi-

cation is given in Algorithm 1 and Algorithm 2.

For data streams with data samples arriving in a sorted fashion (Algorithm 1)205

the code is more compact and computationally efficient. These algorithms can

be applied in situations where consecutive data samples belong to one proto-

type only or to the neighboring prototype. Data belonging to one particular

prototype are therefore always a sequence. An example of such a data stream

is a 2D laser range finder where the reflection points belong to consecutive laser210

9

start

k =0buf

first cluster initialisation:

estimation of j-th cluster:

j=1,

, ,� �j j jp

k=n =kj min

sample distance to
-th cluster calculation:j

d kj()

yes

no

nj=n +j 1

calculate:

� �j j j, ,p

k k= +1

store in buffer:

k k +buf buf= 1

no

yes

kbuf >= kmin

add new cluster:

j=j+1
n kj min=

data sample belong
to current cluster

kbuf=0

calculate:

� �j j j, ,p

no

yes
Are data
consistent?

d kj()<�max

, kbuf=0

Figure 1: Evolving principal component clustering where the clusters are defined by linear

prototypes.

10

k=1 k=2 k=3

Initialization
=1, =3).(j nkbuf=1, 1

k=1 k=2 k=3

k=4

Store =4 in buffer (=1).k kbuf

k=1 k=2 k=3

k=4

k n

k

=5 is in the cluster (=4),

=4 is outlier
1

(=0).kbuf

k=5

k=1 k=2 k=3

k=4

Store =6 in buffer (=1).k kbuf

k=5

k=6 k=1 k=2 k=3

k=4

Store =7 in buffer (=2).k kbuf

k=5

k=6

k=7

k=1 k=2 k=3

k=4

Add =8 to buffer (=3),

add new cluster

(=0).

k k

k

buf

buf

(=2, =3),

clear buffer

j n2

k=5

k=6

k=7

k=8

Next 3 incomming samples
=9-11 are put in buffer (=3).

They are not consistent so they
do not belong to a new cluster
(=3).

k k

k

buf

buf

k=9

k=11

k=10

Next sample =14
extends current cluster (=4).

Data in the buffer are outlayers
(=0).

k
n

k

2

buf

Next 2 samples =12-13
are put in buffer (=5).

k
kbuf

k=12

k=13 k=14

Figure 2: Illustrative example of evolving principal component clustering algorithm operation.

In a sorted data stream the two-dimensional data (r = 2, kmin = 3) are clustered on-line to

straight-lines prototypes. The first kmin = 3 samples (k = 1, · · · , 3) initialize the first cluster.

Next samples (k > 4) extend the current cluster if they are sufficiently close to the straight

line or they are buffered until kmin collinear samples form a new cluster initialization.

rays that are sent in the environment from a starting angle and they increment

to a final angle.

In general data streams (Algorithm 2) the data samples are arriving ran-

domly, so consecutive points do not necessarily belong to only one prototype.

For sorted data stream Algorithm 2 has the same performance as Algorithm 1,215

but the computational complexity of Algorithm 2 is greater.

An illustrative example of how each step of Algorithm 1 works is presented

in Fig. 2.

11

Algorithm 1 Pseudo-code of the principal component clustering algorithm in

on-line identification for a sorted data stream.
1: Definition of the clustering criteria parameter κmax, minimum number of samples

kmin to add a new prototype and the buffer size nbuf = 2kmin.

2: Initialization of the first prototype with the first kmin data samples (k =

1, · · · , kmin) consistent with the prototype. Initialization of j = 1, m = 1,

kbuf = 0, nj = kmin. Estimation of the j-th cluster covariance ΣΣΣj , prototype

parameters pppj and distance variance σj .

3: for k = kmin + 1 : n do

4: Calculate sample zzz(k) distance to the last prototype j = m by

dj(k) = |(zzz(k) −μμμj)
T · pppj |

5: if dj(k) < κmax
√

σj then

6: Add data sample zzz(k) to the current cluster j = m and increment j − th

cluster counter nj = nj + 1.

7: Update ΣΣΣj , pppj and σj of the j-th cluster by Eq. (2), Eq. (3) and Eq. (8).

8: Delete previous data samples in the buffer (outliers) and set kbuf = 0.

9: else

10: Store data sample zzz(k) in a buffer and increment the buffer counter kbuf =

kbuf + 1.

11: if kbuf ≥ kmin then

12: if ngood ≥ kmindata in the buffer are consistent then

13: Add a new prototype (m = m + 1, j = m), set the prototype counter

nj = ngood and clear the buffer (kbuf = 0).

14: Estimate ΣΣΣj , pppj and σj .

15: else

16: If the buffer is full (kbuf ≥ nbuf) remove its oldest datum sample.

17: end if

18: end if

19: end if

20: end for

12

Algorithm 2 Pseudo-code of the principal component clustering algorithm in

on-line identification for a general data stream.
1: Definition of clustering criteria parameter κmax, minimum number of samples kmin

to add a new prototype.

2: Initialization of the first prototype: store incoming data samples (k = 1, · · · , nI)

until kmin data samples consistent with the prototype are found. Initialization

of j = 1, m = 1, kbuf = nI − kmin, nj = kmin. Estimation of the j-th cluster

covariance ΣΣΣj , prototype parameters pppj and distance variance σj .

3: for k = nI + 1 : n do

4: for j = 1 : m do

5: Calculate sample zzz(k) distance to the prototype j by

dj(k) = |(zzz(k) −μμμj))
T · pppj |

6: end for

7: if minj {dj(k)} < κmax

√
σj) then

8: Add data sample zzz(k) to a cluster j and increment j − th cluster counter

nj = nj + 1.

9: Update ΣΣΣj , pppj and σj for the j-th cluster by Eq. (2), Eq. (3) and Eq. (8).

10: else

11: Store data sample zzz(k) in the buffer and increment the buffer counter kbuf =

kbuf + 1.

12: if ngood ≥ kmin data in the buffer are consistent then

13: Add a new prototype (m = m + 1, j = m), set the prototype counter

nj = ngood and remove the data from the buffer (kbuf = kbuf − ngood).

14: Estimate ΣΣΣj , pppj and σj .

15: end if

16: end if

17: end for

3. Comparison with the split-and–merge algorithm

A comparison of the proposed clustering algorithm with the very popular220

split-and-merge clustering algorithm is made. The comparison is made for sorted

data streams obtained from a 2D laser range finder.

13

First, the split-and-merge algorithm is explained, then the algorithmic com-

plexity is evaluated, followed by experimental results obtained on a series of 2D

scans from a SICK LMS200 [27] laser range finder.225

3.1. Split–and–Merge algorithm

Split-and-merge is a very popular algorithm for line extraction [12, 6]. Its

popularity is due to its simplicity, low computational complexity and good per-

formance. It is an iterative algorithm, applicable to sorted data streams, such

as the ones from a laser range finder. The algorithm first assigns all the data230

samples to one cluster and calculates a linear prototype of the cluster (line for

two-dimensional data). The cluster is then iteratively split at the data sample

whose distance to the prototype is the largest and higher than the distance

threshold dsplit. The choice of the splitting constant dsplit should consider the

expected noise of LRF sensor measurements (in distance and angle). dsplit must235

be set higher than expected measurement error due to the noise (e.g. three stan-

dard deviations or more).

The linear prototype of each cluster j (j = 1, · · · ,m) can be expressed in

the normal form as

[zzz(k)T , 1]θθθj = 0 (9)

where zzz(k) is a datum sample lying on the prototype and θθθ is the vector of the

prototype parameters. The prototype parameters are estimated using singular

value decomposition. From all the data samples zzz(kj) in the cluster j (kj =

1, · · · , nj) the regression matrix is written as

ψψψ =

⎡
⎢⎢⎢⎣

zzz(1)T 1
...

...

zzz(nj)T 1

⎤
⎥⎥⎥⎦

which defines a set of homogenous equations ψψψθθθj = 000 with unknown proto-

type parameters θθθj . The solution in the sense of a least-squares minimization

is found if the eigenvector (pppr) of the matrix ψψψTψψψ with the minimum eigen-

value is found. This can be calculated using singular value decomposition. The

14

prototype parameters in a normal form are obtained by normalization of the

eigenvector

θθθj = ‖pppr‖

The orthogonal distance of an arbitrary data sample zzz(k) to the linear prototype240

j is then obtained by

dj(k) =
∣∣ [zzz(k)T , 1]θθθj

∣∣ (10)

In the case of two-dimensional data the linear prototype can alternatively

be estimated simply by connecting the first and the last data sample in the

cluster. This lowers the computational complexity and ensures that the sample

that defines the split does not appear at the first or the last data sample in the245

cluster.

The pseudo code of the split-and-merge algorithm is given in Algorithm 3.

3.2. Comparison of algorithmic complexity

The Complexity of the split-and-merge algorithm (Algorithm 3) is O(n log n)

iterations [12] as the algorithm has two nested loops where n is the number of250

data samples. During each iteration one calculation of the data-sample distance

(10) to the cluster prototype is made to find the sample with the worst fit

to the prototype that has a complexity of O(2r − 1) arithmetic operations (r

multiplications and r− 1 additions). Additionally, for each cluster at least once

the prototype is estimated using the batch least-squares method, so altogether255

approximately m logm times, where m is the number of identified clusters.

The complexity of the least-squares is O(r2n) [28] due to the singular value

decomposition of the regression matrix ψψψ, where r is the dimension of the data

sample and n� r. In total the split-and-merge algorithm needs

OSM (n log n(2r − 1) +m logm · r2n) (11)

arithmetic operations.260

The complexity of the evolving principal component clustering (Algorithm 1)

is O(n) algorithm iterations. During each iteration the distance of the current

15

Algorithm 3 Pseudo-code of the split-and-merge algorithm line identification

for a sorted data stream.
1: Definition of split criteria dsplit.

2: Start with a single cluster which contains all the data (k = 1, · · · , n). Initialize

current cluster index j = 1, number of samples in that cluster nj = n and number

of clusters m = 1. Mark the cluster as non-final.

3: repeat

4: for all non-final clusters j = 1, · · · , m do

5: Fit the linear prototype to the data in cluster j.

6: for all data kj = 1, · · · , nj in cluster j do

7: calculate distance of data sample zzz(kj) to the cluster prototype θθθj .

dj(kj) =
∣∣∣ [zzz(kj)

T , 1]θθθj

∣∣∣

8: end for

9: Locate the sample zzzmax with the maximum distance dmax = maxkj (dj(kj))

10: if dmax > dsplit then

11: Split the cluster at the zzzmax into two clusters and mark them non-final.

12: else

13: Mark the cluster as final.

14: end if

15: end for

16: until all clusters are final

17: Merge collinear clusters. This step is optional and is usually not required in ordered

data streams.

datum sample to the actual prototype is calculated and the cluster variance,

mean and distance variance are updated for the actual cluster. An update of

the distance (6) requires O(2r−1) arithmetic operations, an update of the vari-265

ance (2) takes O(5r) (3 multiplications and 2 additions of r dimensional data)

arithmetic operations, an update of the mean (1) takes O(3r) (2 summations

and 1 division of r dimensional data) and an update of the distance variance (8)

requires O(4r) arithmetic operations. In total, the evolving principal component

16

clustering algorithm needs270

OEPCC(14nr − n) (12)

arithmetic operations.

From a comparison of (11) and (12) it is evident that the complexity of the

proposed algorithm is lower than the split-and-merge algorithm in the case of a

large number of data n and decreases with the data dimension r and with the

number of identified clusters m. The complexity of the proposed algorithm also275

does not depend on the number of identified clusters. The relative complexity

OEPCC/OSM is shown in Table 1, where it can be seen that the split-and-merge

algorithm is computationally more efficient only in the case of low-dimensional

data and a small number of identified clusters (e.g., r = 2 and m < 4).

For general data streams Algorithm 2 needs to be employed. Its com-280

plexity is greater than the complexity of Algorithm 1, which is only valid for

sorted data streams. The complexity of Algorithm 2 is O(n log n) and requires

OEPCCgen (n log n (14r − 1)) arithmetic operations. Note that the split-and-

merge algorithm is a batch algorithm valid only for sorted data. This means

that on-line identification is not possible. Moreover, its use for general data285

would require some modifications, which would increase its complexity like in

the case of the proposed algorithm.

3.3. Experimental comparison

Both clustering algorithms were validated on data obtained from the SICK

LMS200 laser range finder, where each scan contains n = 180 two-dimensional290

points.

The results of the clustering for both algorithms are shown in Fig. 3. Both

algorithms produce clustering results of similar quality if the clustering param-

eters are properly set. In the split-and-merge (SM) algorithm the threshold

distance of the cluster splitting was dsplit = 0.06 m. The value of this param-295

eter depends on the clustering data noise and scale, and therefore needs to be

adjusted for a particular clustering problem. In evolving principal component

17

Figure 3: Clustering results of Evolving principal component clustering (EPCC) algorithm

and Split–and–Merge Algorithm (SM). Results are obtained on data from SICK LMS200

laser range finder.

18

Table 1: Relative complexity comparison (OEPCC/OSM) of evolving principal component

clustering (EPCC) algorithm and split–and–merge Algorithm (SM) where n is the number of

r dimensional data and m is the number of clusters. For values less than 1 the EPCC is more

efficient than the SM.

Relative complexity for r = 2
��������n

m
2 4 6 8 10 12 14

102 3.21 1.72 1.09 0.77 0.58 0.46 0.38

103 2.36 1.44 0.97 0.71 0.55 0.44 0.36

104 1.87 1.24 0.88 0.66 0.51 0.42 0.35

105 1.55 1.09 0.80 0.61 0.49 0.40 0.34

106 1.32 0.97 0.73 0.57 0.46 0.38 0.32

Relative complexity for r = 3
��������n

m
2 4 6 8 10 12 14

102 2.65 1.29 0.78 0.54 0.41 0.32 0.26

103 2.00 1.11 0.71 0.51 0.39 0.31 0.25

104 1.61 0.98 0.66 0.48 0.37 0.30 0.24

105 1.34 0.87 0.61 0.45 0.35 0.28 0.24

106 1.15 0.79 0.56 0.43 0.34 0.27 0.23

Relative complexity for r = 4
��������n

m
2 4 6 8 10 12 14

102 2.32 1.04 0.62 0.42 0.31 0.24 0.20

103 1.79 0.92 0.57 0.40 0.30 0.24 0.19

104 1.46 0.82 0.53 0.38 0.29 0.23 0.19

105 1.23 0.74 0.50 0.36 0.28 0.22 0.18

106 1.06 0.68 0.47 0.34 0.27 0.22 0.18

19

clustering (EPCC) the choice of initialization parameters was κmax = 7 and

kmin = 3. Those two parameters are independent of the clustering problem.

The parameter kmin only defines the minimum number of samples needed to300

form a new cluster, while κmax is used to validate whether the current sam-

ple distance to the actual cluster prototype is less than the distance variance

for all the samples in the cluster (see clustering criteria in line 5 of Algorithm

1). The clustering criteria therefore considers the cluster statistic and adapts

automatically; there is no need for manual tuning for different data noise or305

scaling.

In Fig. 3 the EPCC finds 19 clusters and the SM 18 clusters, which is

due to the different clustering criteria. This additional cluster (in the EPCC

case) is zoomed in Fig. 3. It appears because the distance variance σ of the

cluster data is very small and therefore the splitting condition (7) becomes more310

selective. If dsplit were to be lowered or κmax set higher then the same number

of clusters could be obtained, but the clusters would not be identical due to the

different clustering algorithm. Both algorithms were implemented in the same

environment (Matlab) and on the same computer with a similar programming

style. For the data in Fig. 3 the EPCC took 0.0098 s and the SM took 0.0262 s.315

The computation time for the EPCC is less than half of the computation time

needed for the SM, which corresponds to the complexity comparison given in

Table 1.

Besides the lower computational complexity, the EPCC’s advantage over

the SM is a simpler implementation on some embedded computers, because320

only simple mathematical operations are required, as opposed to the SM, where

least-squares or singular value decomposition needs to be coded. When splitting

clusters in SM it could happen that the sample with the worst fit (with the

largest distance from the cluster prototype) appears at the beginning or at the

end of the strait line segment where line splitting does not make sense. In this325

case the cluster prototype can be re-estimated by simply connecting those two

edge points of the cluster which guarantee the splitting sample to be somewhere

in the middle. So obtained prototype then does not fit the cluster data optimally

20

in the least-squares sense, therefore it should only be used in the mentioned

splitting problem.330

An additional advantage of the EPCC is the adaptive nature of the clustering

parameters, which do not need to be fine tuned for each problem separately

(different noise and data scaling). The latter advantage is also important when

performing clustering on the same data, where data belonging to one cluster

can have more noise than the data belonging to the other cluster (e.g., in the335

case that the laser range finder rays are close to being parallel to the object’s

borders). The SM is a batch clustering algorithm, so it requires all the data

samples to perform clustering, while the EPCC can be used online for data

coming sequentially from a process. The former can be an advantage when

online clustering is required, or a disadvantage in the case that batch data are340

available because the clustering algorithm can perform better if it has the whole

data set information available.

Nevertheless, the quality of clustering is very similar for both approaches.

3.4. Algorithm tuning effort and robustness to data scale and noise

Both algorithms have only one tuning parameter and are very simple to345

adjust to a particular clustering application. In the SM this parameter is dsplit

and in the EPCC it is κmax. The clustering criterion (7) in the EPCC considers

data variance, which causes the clustering to adapt to the current data. The

former is especially convenient in the case of different data scaling or different

noise in the data. The EPCC therefore needs less or no tuning compared to350

the SM, an example is given in Fig. 4. Data from Fig. 3 are scaled to 10 %

of the original scale (divided by 10), while the algorithm’s parameters remain

the same. As seen from Fig. 4, the clustering result remains unchanged in the

EPPC, while in the SM the clusters are wrong.

The example in Fig. 3 includes real laser-range-finder data with noise. In or-355

der to demonstrate the robustness to different noise influences, additional noise

with a normal distribution is added to the real data. The obtained clustering

results are given in Fig. 5 where, the EPCC identifies 16 clusters and the SM 36

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x[m]

y[
m

]
EPCC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x[m]

y[
m

]

SM

Figure 4: Change of data scaling to 10 % of scaling in Fig. 3 with no change of clustering

algorithm parameters.

22

clusters. More noise causes the clustering criterion (7) to become less sensitive,

so a smaller number of clusters are identified (three less than in Fig. 3). This360

behavior is desirable. However, in the SM the number of clusters is increased

(twice as many as in Fig. 3) because the splitting criterion (line 10 in algorithm

3) is triggered by the noise and the obtained clusters are not reliable. To obtain

more reliable results in the SM, the parameter dsplit must be increased.

3.5. Robustness to outliers365

The original laser-range-finder data from Fig. 3 are additionally corrupted by

salt-and-pepper noise. To the original sorted data stream the uniform random

noise sample (outlier) is included so the final data set has 360 samples (180

original samples and 180 outlier samples). The results of the clustering using

EPCC are given in Fig. 6, where 16 clusters are identified. On the same data370

set the basic SM algorithm fails to produce useful clustering results due to the

inserted outliers. Therefore, the Hough transform is applied, which can reliably

estimate the clusters in the presence of outliers.

The basic Hough transform (HT) is implemented where the straight-line pa-

rameters α and d are defined by the linear prototype (9) where θθθj = [cosα, sinα, d].375

The normal line parameters range −π < α ≤ π and dmin < d ≤ dmax are pre-

sented in the accumulator by a 720 row and 720 column array. HT therefore

requires some a-priori knowledge to properly select quantization of the param-

eter space and the threshold value to locate maximums in the accumulator.

The obtained accumulator is shown in Fig. 7. The HT can locate 8 straight380

lines that describe 13 data clusters of the data, because the HT cannot separate

collinear line segments, as seen from Fig. 7. Other straight lines appear ran-

domly on collinear outlier samples. The HT is a robust algorithm for sorted or

general batch data, or also for data streams if online implementations are used.

In contrast, the EPCC algorithm is a well-suited algorithm for sorted stream or385

batch data and can therefore reliably eliminate outlier data that appear during

a sequence of good data samples belonging to one cluster. Also, the distance

of the consequent data samples can easily be considered in the clustering cri-

23

−1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

4

5

x[m]

y[
m

]

EPCC

−1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

x[m]

y[
m

]

SM

Figure 5: Clustering results on real data from Fig. 3 with enhanced noise and with no change

of clustering algorithm parameters.

24

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

x[m]

y[
m

]

EPCC

Figure 6: Clustering results of Evolving principal component clustering (EPCC) algorithm on

real data with salt-and-pepper noise.

teria. If this distance is too long, then the current sample does not belong to

the current prototype. Additional advantages of the EPCC are its simplicity of390

implementation, low parameter-tuning effort and fast operation. The EPCC is

much faster than the classic HT implementation (in the example in Fig. 6 the

EPCC took 0.03 s and the HT took 1.1 s). In the HT the result of clustering is

dependent on the proper selection of the parameter-space quantization and on

the parameter settings for the maximums search in the accumulator.395

3.6. Statistical results of clustering

A detailed comparison of commonly used algorithms for straight-lines ex-

traction from laser-range-finder data is given in [12]. To evaluate the proposed

evolving principal component clustering (EPCC) algorithm a similar compari-

son is made by considering the split-and-merge algorithm (SM) and the Hough400

transform (HT).

A laboratory room consisting of 60 scans obtained from different locations

using a mobile robot with a SICK LMS200 laser range finder is shown in Fig.

25

α [rad]

d
[m

]

100 200 300 400 500 600 700

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5
HT

x[m]

y[
m

]

Figure 7: Accumulator of the Hough transform (upper) for data with salt-and-pepper noise

and identified straight lines (lower). Maximums in the accumulator (720 row and 720 column

array) were identified using the Houghpeaks function in Matlab, where the threshold is set to

5 and the suppression neighborhood to [13, 29].

26

−2 −1 0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

6

x[m]

y[
m

]

Figure 8: The map of LMSV laboratory obtained from 60 laser range finder scans containing

10800 points.

8. Each scan contains 180 points, so in total Fig. 8 consists of 10800 reflection

points. Each scan is evaluated separately by the number of estimated line405

clusters relative to the number of true clusters. A true line contains at least 4

sample points, where the distance between consecutive points is less than 0.2

m. A total of 561 straight lines can be found on all 60 scans or approximately

9 per scan. In Fig. 8 a cumulative scan is shown where local scans are merged

together using the SLAM algorithm, which is also the reason for some additional410

noise in the observed groups of points that belong to a straight line (error in

the robot-pose estimate). In separate scans the error due to the SLAM is not

present; however, there are many outliers or smaller groups of points belonging

to curved objects, chair legs, humans and the like.

In Table 2 the obtained clustering results are given by average processing415

time (Matlab implementation on 2.6-GHz personal computer), by the percentage

of correctly estimated line segments (according to the number of true straight

lines in the scan) and by the percentage of wrong estimates (estimated lines

without a match in the true line-set relative to the number of estimated straight

27

Table 2: A comparison of line-extraction algorithm performance on the laser-range-finder data

shown in Fig. 8.

algorithm comp. time [ms] true est. [%] false est. [%]

EPCC 23 90.2 10.3

SM 44 87.9 13.0

HT 774 76.3 17.5

lines).420

The clustering parameters were chosen as follows: κmax = 7, kmin = 3 for

EPCC, dsplit = 0.06 m for SM and quantization of the normal line parameters

and the threshold (for locating maximums in the accumulator) in the Hough

transform were 0.5◦, 1 cm and 5, respectively. In all the algorithms only the

estimated lines containing at least 4 points are considered. From the compari-425

son it can be concluded that for sorted data streams the EPCC’s performance

is at least similar to or better than, the performance of the SM or HT, while the

computational time of the EPCC is much shorter. The classic HT algorithm

performs the worst; however, its performance can be improved by additionally

considering the information from successive data, which is available in sorted430

(batch or stream) data where a new cluster can be formed only from the succes-

sive samples if the distance between the neighboring data is sufficiently small.

The clusters in Figs. 3-8 are crisp with no or very little overlapping because

the LRF sensor can only measure visible reflection points (i.e., it cannot measure

reflection points behind the wall corner). The proposed algorithm is applicable435

also to the overlapped clusters data (the linear prototypes are not collinear and

cannot be described by a single linear model). If the data with overlapped

clusters are not sorted data stream then the Algorithm 2 must be used.

The proposed algorithm can also be applied to 3D LRF where r = 3 and the

linear prototype is plane. If the obtained 3D LRF data stream is sorted then440

Algorithm 1 can be applied otherwise if due to scanning pattern data stream is

not sorted then the Algorithm 2 need to be used.

28

4. Conclusion

A novel evolving clustering algorithm has been developed to identify clusters

defined by linear models from particular process data. The algorithm can be445

used for online or batch clustering. For ordered data streams such as the one

from a laser range finder the EPCC produces similar results to the SM, but

requires less than half of the computational effort of the SM. For general data

streams the EPCC algorithm requires a double iteration for the loop, so the

algorithm complexity increases: however, the basic SM algorithm cannot be450

used in this case, as it requires ordered data.

A practical advantage of the EPCC is that it does not need least-squares

fitting methods to estimate the linear models. It only requires a recursive esti-

mation of the data variance, which is much simpler to implement on embedded

systems with lower performance. The EPCC algorithm is easy to tune to var-455

ious processes as it only has one parameter. The clustering criterion depends

on the currently estimated distance variance from the cluster prototype. The

clustering performance therefore adapts automatically to the process noise, so

less tuning effort is required and a higher clustering robustness is achieved. The

EPCC algorithm is therefore a good choice for linear prototype extraction in460

sorted data streams due to its simplicity of implementation, low computational

complexity and good estimation accuracy. It is therefore applicable to SLAM

related problems where on-line localization is done using estimated strait lines

from the laser range finder data.

References465

[1] S. Thrun, Robotic mapping: A survey, in: G. Lakemeyer, B. Nebel (Eds.),

Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann,

San Francisco, 2003, pp. 1-35.

[2] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,

M. Csorba, A solution to the simultaneous localization and map building470

29

(SLAM) Problem, IEEE Transactions on Robotics and Automation 17 (3)

(2001) 229–241.

[3] H. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: Part

i, IEEE Robotics & Automation Magazine 13 (2) (2006) 99–110.

[4] N. Musavi, J. Keighobadi, Adaptive fuzzy neuro-observer applied to low475

cost INS/GPS, Applied Soft Computing 29 (2015) 82–94.

[5] U. Larsson, J. Forsberg, A. Wernersson, Mobile robot localization: Inte-

grating measurements from a time-of-flight laser, IEEE Transactions on

Industrial Electronics 43 (3) (1996) 422–431.

[6] L. Teslić, I. Škrjanc, G. Klančar, EKF-based localization of a wheeled mo-480

bile robot in structured environments, Journal of Intelligent and Robotic

Systems 62 (2) (2011) 187–203.

[7] X. Zhang, A. B. Rad, Y.-K. Wong, A robust regression model for simul-

taneous localization and mapping in autonomous mobile robot, Journal of

Intelligent and Robotic Systems 53 (2) (2008) 183–202.485

[8] M. Begum, G. K. I. Mann, R. G. Gosine, Integrated fuzzy logic and genetic

algorithmic approach for simultaneous localization and mapping of mobile

robots, Applied Soft Computing 8 (2008) 150–165.

[9] G. A. Borges, M.-J. Aldon, Line extraction in 2D range images for mobile

robotics, Journal of Intelligent and Robotic Systems 40 (3) (2004) 267–297.490

[10] D. Borrmanna, A. Nüchtera, M. Dukalović, I. Maurović, I. Petrović, D. Os-

manković, J. Velagić, A mobile robot based system for fully automated ther-

mal 3D mapping, Advanced Engineering Informatics 28 (4) (2014) 425-440.

[11] D. H. Ballard, Generalizing the hough transform to detect arbitrary shapes,

Pattern Recognition 13 (2) (1981) 111–122.495

30

[12] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, R. Siegwart, A compar-

ison of line extraction algorithms using 2D range data for indoor mobile

robotics, Autonomous Robots 23 (2) (2007) 97–111.

[13] L. Xu, E. Oja, Randomized hough transform (RHT): Basic mechanisms,

algorithms, and computational complexities, CVGIP: Image Understanding500

57 (2) (1993) 131–154.

[14] J. Basak, A. Das, Hough transform network: Learning conoidal structures

in a connectionist framework, IEEE Transactions on Neural Networks 13 (2)

(2002) 381–392.

[15] T. Pavlidis, S. L. Horowitz, Segmentation of plane curves, IEEE Transac-505

tions on Computers 23 (8) (1974) 860–870.

[16] T. Kenesei, J. Abonyi, Hinging hyperplane based regression tree identified

by fuzzy clustering and its application, Applied Soft Computing 13 (2013)

782–792.

[17] L. Zhu, F.-L. Chung, S. Wang, Generalized fuzzy C-means clustering algo-510

rithm with improved fuzzy partitions, IEEE Transactions on Systems Man

and Cybernetics Part B (Cybernetics) 39 (3) (2009) 587–591.

[18] D. Dovžan, I. Škrjanc, Recursive clustering based on a Gustafson-Kessel

algorithm, Evolving systems 2 (1) (2011) 15–24.

[19] R.-E. Precup, M.-C. Sabau, E. M. Petriu, Nature-inspired optimal tuning515

of input membership functions of Takagi-Sugeno-Kang fuzzy models for

anti-lock braking systems, Applied Soft Computing 27 (2015) 575–589.

[20] P. Angelov, An approach for fuzzy rule-base adaptation using on-line clus-

tering, International Journal of Approximate Reasoning 35 (3) (2004) 275–

289.520

[21] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartogra-

phy, Communications of the ACM 24 (6) (1981) 381–395.

31

[22] X. Bai, W. Yao, J. E. Boyer, Robust fitting of mixture regression models,

Computational Statistics and Data Analysis 56 (7) (2012) 2347–2359.525

[23] A. Cerioli, D. Perrotta, Robust clustering around regression lines with high

density regions, Advances in Data Analysis and Classification 8 (1) (2014)

5–26.

[24] W. Li, H. H. Yue, S. Valle-Cervantes, S. J. Qin, Recursive PCA for adaptive

process monitoring, Journal of Process Control 10 (5) (2000) 471–486.530

[25] A. Bellas, C. Bouveyron, M. Cottrell, J. Lacaille, Model-based clustering of

high-dimensional data streams with online mixture of probabilistic PCA,

Data Analysis and Classification 7 (3) (2013) 281–300.

[26] E. Anderson, Z. Bai, C. Bischof, S. J. Blackford, J. Demmel, J. Dongarra,

J. Du. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,535

LAPACK User’s Guide. Third Edition, SIAM, Philadelphia, 1999.

[27] SICK, Reute, Germany, LMS 200 / LMS 211 / LMS 220 / LMS 221 / LMS

291 Laser Measurement Systems (2002).

[28] L. Li, A new complexity bound for the least-squares problem, Computers

& Mathematics with Applications 31 (12) (1996) 15–16.540

[29] S. Barchinezhad, M. Eftekhari, A New Fuzzy and Correlation Based Fea-

ture Selection Method for Multiclass Problems, International Journal of

Artificial Intelligence 12 (2014) 24–41.

32

	Introduction
	Evolving principal component clustering
	Estimate of cluster mean and variance
	Estimation of eigenvectors for low-dimensional data

	Linear prototype estimation and clustering criteria
	Cluster initialization
	Outlier removal
	Clustering algorithm

	Comparison with the split-and--merge algorithm
	Split--and--Merge algorithm
	Comparison of algorithmic complexity
	Experimental comparison
	Algorithm tuning effort and robustness to data scale and noise
	Robustness to outliers
	 Statistical results of clustering

	Conclusion

